Aim: Design a distributed application using MapReduce under Hadoop for:
a) Character counting in a given text file.
b) Counting no. of occurrences of every word in a given text file.
Requirement:
If you are getting error regarding java.lang.UnsupportedClassVersionError
Then go to the project -> Properties -> Java Compiler -> Uncheck Compiliance for execution environment -> Select 1.6 enivronment ->Apply Close and run again the project
Steps:
# It will display your user name, we will use it later.
# Open eclipse->new java project->project name exp5a ->new class-> CharMap
# Add following code in that class
# Save the file
# It will display some errors, so we are going to import three jar files in our project.
# Copy hadoop-mapreduce-client-core-2.7.1.jar from ~/hadoop/share/hadoop/mapreduce directory # In eclipse-> right click on exp5a project- >paste
# Right click on pasted hadoop-mapreduce-client-core-2.7.1.jar-> Buid path-> add to buid path
#Copy hadoop-common-2.7.1.jar from ~/hadoop/share/hadoop/common directory
# In eclipse-> right click on exp5a project- >paste
# Right click on pasted hadoop-common-2.7.1.jar-> Buid path-> add to buid path
#Copy commons-cli-1.2.jar from ~/hadoop/share/hadoop/common/lib directory
# In eclipse-> right click on exp5a project- >paste
# Right click on pasted commons-cli-1.2.jar-> Buid path-> add to buid path
# In eclipse->right click on project exp5a ->new class-> CharReduce
# Add following code in that class
# Save the file
# In eclipse->right click on project exp5a ->new class-> CharCount
# Add following code in that class
# Save the file
# In eclipse->Right click on project exp5a-> export->java->jar file->next-> select the export destination -> /home/ your_user_name /exp5a.jar -> next -> next -> select main class ->browse - > CharCount - > finish
# exp5a.jar file will be created in your home folder
# Open terminal
# Now Start NameNode daemon and DataNode daemon:
# Make the HDFS directories required to execute MapReduce jobs
# Put sample.txt file in hdfs
# Perform MapReduce job
# Output
#
Our task is done, so delete the distributed files (input_data & output_data)
#STOP HADOOP
Counting no. of occurrences of every word in a given text file.
Reference: https://sl6it.files.wordpress.com/2015/12/mapreduce-wordcount-steps1.pdf
WordCount.java
a) Character counting in a given text file.
b) Counting no. of occurrences of every word in a given text file.
Requirement:
- Hadoop - http://www.professionalcipher.com/2018/01/how-to-install-hadoop-on-ubuntu-1604.html
- Eclipse - http://www.professionalcipher.com/2018/03/installation-of-eclipse-on-ubuntu.html
- Create sample.txt and write any thing in it and paste in home folder. Example: Online platform for education, java, design, programs, assignments, projects, source code, software, information technology, books, engineering stuff.
If you are getting error regarding java.lang.UnsupportedClassVersionError
Then go to the project -> Properties -> Java Compiler -> Uncheck Compiliance for execution environment -> Select 1.6 enivronment ->Apply Close and run again the project
Steps:
whoami
# It will display your user name, we will use it later.
# Open eclipse->new java project->project name exp5a ->new class-> CharMap
# Add following code in that class
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class CharMap extends Mapper<LongWritable, Text, Text, IntWritable>
{
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
char[] carr = line.toCharArray();
for (char c : carr) {
System.out.println(c);
context.write(new Text(String.valueOf(c)), new IntWritable(1));
}
}
}
# Save the file
# It will display some errors, so we are going to import three jar files in our project.
# Copy hadoop-mapreduce-client-core-2.7.1.jar from ~/hadoop/share/hadoop/mapreduce directory # In eclipse-> right click on exp5a project- >paste
# Right click on pasted hadoop-mapreduce-client-core-2.7.1.jar-> Buid path-> add to buid path
#Copy hadoop-common-2.7.1.jar from ~/hadoop/share/hadoop/common directory
# In eclipse-> right click on exp5a project- >paste
# Right click on pasted hadoop-common-2.7.1.jar-> Buid path-> add to buid path
#Copy commons-cli-1.2.jar from ~/hadoop/share/hadoop/common/lib directory
# In eclipse-> right click on exp5a project- >paste
# Right click on pasted commons-cli-1.2.jar-> Buid path-> add to buid path
# In eclipse->right click on project exp5a ->new class-> CharReduce
# Add following code in that class
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class CharReduce extends Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int count = 0;
IntWritable result = new IntWritable();
for (IntWritable val : values) {
count += val.get();
result.set(count);
}
context.write(key, result);
}
}
# Save the file
# In eclipse->right click on project exp5a ->new class-> CharCount
# Add following code in that class
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
public class CharCount
{
public static void main(String[] args) throws Exception
{
// TODO Auto-generated method stub
Configuration conf = new Configuration();
@SuppressWarnings("deprecation")
Job job = new Job(conf, "Charcount");
job.setJarByClass(CharCount.class);
job.setMapperClass(CharMap.class);
job.setReducerClass(CharReduce.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
# Save the file
# In eclipse->Right click on project exp5a-> export->java->jar file->next-> select the export destination -> /home/ your_user_name /exp5a.jar -> next -> next -> select main class ->browse - > CharCount - > finish
# exp5a.jar file will be created in your home folder
# Open terminal
# Now Start NameNode daemon and DataNode daemon:
~/hadoop/sbin/start-dfs.sh
# Make the HDFS directories required to execute MapReduce jobs
~/hadoop/bin/hdfs dfs -mkdir /user
~/hadoop/bin/hdfs dfs -mkdir /user/your_user_name
# Put sample.txt file in hdfs
~/hadoop/bin/hdfs dfs -put ~/sample.txt input_data
# Perform MapReduce job
~/hadoop/bin/hadoop jar ~/exp5a.jar input_data output_data
# Output
~/hadoop/bin/hdfs dfs -cat output_data/*
#
Our task is done, so delete the distributed files (input_data & output_data)
~/hadoop/bin/hdfs dfs -rm -r input_data output_data
#STOP HADOOP
~/hadoop/sbin/stop-dfs.sh
Counting no. of occurrences of every word in a given text file.
Reference: https://sl6it.files.wordpress.com/2015/12/mapreduce-wordcount-steps1.pdf
WordCount.java
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
public static class TokenizerMapper extends
Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer extends
Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args)
.getRemainingArgs();
if (otherArgs.length < 2) {
System.err.println("Usage: wordcount <in> [<in>...] <out>");
System.exit(2);
}
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
for (int i = 0; i < otherArgs.length - 1; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
FileOutputFormat.setOutputPath(job, new Path(
otherArgs[otherArgs.length - 1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
I believe there are many more pleasurable opportunities ahead for individuals that looked at your site.
ReplyDeletehttps://www.besanttechnologies.com/training-courses/data-warehousing-training/big-data-hadoop-training-institute-in-bangalore